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1. Introduction. The difference calculus has led to the 
introduction into analysis of new classes of functions 
defined as solutions of equations of the type

,/ r(~) = y (z)

or of difference equations of higher order. Among the 
simplest and most important of the functions delined in 
this manner is tp (~), the logarithmic derivative of the 
gamma function.

The central role played by ip (z) in the difference cal
culus, as well as its importance for analysis in general, 
would seem to justify a detailed study of the properties of 
this function. Most of these have been known a long time, 
but there are still some problems outstanding. In the pre
sent paper we undertake an investigation of the distribu
tion of the values taken on by ip (z) and of the corre
sponding conformal mapping. This problem requires a 
detailed study of the properties of ip' (z) and in particular 
of the zeros of this function. In Part I of the paper we 
are chiefly concerned with a determination of regions in 
the plane where the real part of ip (r) is positive. The 
study of ip'(r) follows in Part II; the main problem is 
attacked in Part III.1

1 The present investigation was undertaken at the suggestion of 
Professor N. E. Nörlund. I should like to use this opportunity to express 
my gratitude to Professor Nörlund and to all the Copenhagen mathema
ticians for their friendly interest and for the cordial reception which 
they have given me.

1*
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Part I.
A Preliminary Study of ip(z).

2. Formal properties of ip (z). The function ip (z) is 
defined as that principal solution of the equation

which assumes the value —C for z = + 1, where C —
0.5772156649 ... is Euler’s constant. We have

(1)

X

II = u
V7 (")

Of the many relations satisfied by ip (") we notice the 
following
(2) ip(z-l) = ip (z) + * ,

(3)

(4)

(5)

ip (1 — z) — ip (z) + 71 cot 71 z,

m ip (inz)

lim [ip (r)
(J —> cc

log cj = 0.

Here m is a positive integer and logr denotes the principal 
determination of the logarithm; o is the least distance of 
z from the negative real axis. Let us writeo

(6) v7 (æ + ôz) = y) +?/)>
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(<S) / (æ, y)

In view of formulas (2)—(4) these functions satisfy the 
following relations:

(9) 7? (x + 1, y) = R (x, y) + ^.2 i „2 ’

(10) 7 (x + 1, y) = I Gr, y) — p^~2 ’

R (1 — x, — y) = 77 (1 — x, y) =

(11) coth'2 Try—1
— 77 (X, Z/) + TT COt TT X g i *12' cot“ ttx + coth“ x y

I 7(1—x, —y) - —7(1—x, y) =
(12) | . . , COt27TX+l— 7 (x, y) — 7T coth 7Ty x9 . -,2J cot2 ttx + coth2 xy

m — 1
(13) m R(nix, nui) = 77 1 x + , y ) + m log m,_ / \ m /n = 0

/n —1
(14) ml(mx, my) — , y j,

n = 0 \ '

(15) lim 77(x, y) — log | z | = 0,
() —> oc

(16) lim 7(x, y) —argz] = 0.
o—> ac

For particular values of x we can express 7(x, y) in 
terms of elementary functions. Thus

(17)
TT 1

7 (0, y) = coth /ry + —-, z z y

GGG = ith7ry'(18)
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The former relation is obtainable from (10) and (12) by 

letting the latter from (12) by putting x = —

For purposes of numerical calculation we shall use the 
following relation"

111

(19) /)'(-) = log z — ,
V = 1

2c?r \ (Z + r)2/,, + 1
*>o

Here Z?2, ... are the Bernoullian numbers; K>m(t) is
that periodic function of period unity which on the inter
val (0, 1) coincides with B2/n (/), the Bernoullian polynomial 
of order 2 m. We shall use this formula for purely imagi
nary values of z. Setting z = iy we get

(20)

where the absolute value of the remainder is less than

(21)

0

Max I B,„, (/) 2-4-6 . . . (2/77 — 2)
1-3-5 . . . (2/77—1)

Finally we shall have some use for the following fac
torial series

(22) (’ + //)-7/1 (r) ^^ (-— l)n /?(/?— 1 ) , , , (/? — 7?) 
—/? + 1 z(z + 1) . . . (z + /?)’ n = 0 

which converges when sJv(r)>0 and $R(z+/?)>0.3

1 I am indebted to Professor N. E. Nörlund for formula (18) which 
will be found useful below.

2 See N. E. Nörlund: Vorlesungen über Differenzenrechnung, Berlin, 
.1. Springer, 1924, p. 106. All the fundamental formulas for which 
we use in the present paper are to be found in this book, chiefly in 
Chapter Five.

3 See Nörlund, 1. c. p. 251.
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3. Properties of R(x, y) and Z(æ, y). It follows from (7) 
that
(23) I (x, y) = 0 according as y = 0.

Hence all the zeros of are real. As

00

n = 0

for all real values of x, we conclude that ip(z) vanishes 
once and only once on each of the intervals (—n— 1, •—/?), 
n = 0, 1, 2, . . . and in addition once on the positive real 
axis. The positive zero <r0 lies between 1 and 2; it was 
computed by Gauss and Legendre who found x0 = 1.46163 . . .

Substituting z — —n — — in (3) we find that

(24) — = W (n + ^) > 0 for n = 0, 1, 2, . . .

It follows that the zero xn of ip(z) on the interval (—n, 
— n + 1) lies on the left half of this interval. With the aid 
of (3) in conjunction with (5) we conclude that

(25) Xn cv) — /j 4- —— .
log n

All these facts are of course well known. We shall 
now take up a detailed discussion of R(x, y). It follows 
from (7) that

(26) 7? (.r, y£) > 7? (.r, y2) when t > 0 and | yr | > | y2 |.

Hence in particular

(27) R(x, y) > 0 when x>x0, z x0.

Using formula (9) we conclude that
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(28) R (x, y) = R (x + 1, y) according as x = 0.

Further, formula (11) implies that

(29) /?(x,y)

> /?(1 — x, y) when

= /? ( 1 — x, y) when

< R(1—x, y) when

Here n is an arbitrary integer including zero. Suppose that 
n<— 2, then (29) together with (27) implies that 

(30) R(x, if) > 0 when — n — — < x < — n, n — 1,2,3, . . .

If we set 7? = —1 in (29) we merely get that /?(x, y)>0 

when — — < x < 1 — x0.

The result stated in formula (30) can be improved 
upon; in fact we have

(31) R (x, y) > 0 when xn + i < x < — z?, n = 1, 2, 3, . . ., 

where, as above, xn + i denotes the zero of tp(z) on the 
interval (—n— 1,—n). It is evidently sufficient to prove 

that R(x, if) is positive for xn + i <_ x <—n — -, as the 

remainder of the interval is already taken care of. But 
th is follows from formula (11). We have

/? (x, y) R (1 — X, y) — 7T cot 71 x coth2 Tty — 1 
cotli2 Tty + cot2 71X '

Let x be fixed on the interval —n—1, —n—. The 

first term on the right hand side is always positive and 
increases with |y|. The second term is also positive, but 
decreases when | y | increases. Consequently
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(32) R (a?, yt) > R (x, z/2) when — n — 1 <x < — /z — 

and I z/i I > | z/2 I •

1
2

If we set z/2 = 0 in (32) and assume a'n + i <a' < — n— , 

then the right hand side is positive; this suffices to 
prove (31).

Next we proceed to prove that 

(33) R(x, y) > 0 when x < — ,

For this purpose we again use formula (11). Let us give 
y a fixed positive value and vary x, then

If I U I = ■«’ (34) implies that R(x, z/) differs from 7?(1 —x, y) 
by at most ™ ■ = 0.2704. But if x< - and |z/|> —,

s/z n — 4 — 2

R (1 —x, y) > R In fact, the least value of R(1—x, y)

in the region in question must be reached on the boundary. 
In view of (26) the least value on the vertical boundary 
is to be found at the lowest point. The horizontal boundary

7 1remains. Consider formula (7) with x> , and y —— 4 2
All the terms

- n+~—-7 (n = 0,1,2, . . .)

(n + !/)2 +

will then be decreasing functions of x when x increases. 

Hence the least value of —x, for x <,—will be 

reached at x — — . It is difficult to estimate the size of4
without computation so we use the computed
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an

(11) and

7? ?

7T

sh 2nyQ'
1
2 ’

n is

Thus, inorder that 77 (æ, y) be positive when x<— /? — — 

I y I > y0, it is sufficient that

The same type of argument can be 
order to show that 77 (x, y) > 0 when x < 0, 

There is some doubt whether or not 77 (a?, y) will 
3 z negative values on the line segment from —7 + 77

1
2 ‘
let us assume that a? <—

> 3, and that | y | > y0 > 0.

7T

s/i 2/ry0

value 0.3136 (> 0.2704), to be found in Table I on p. 53. 
Hence (33) is true.
used in 
117 I > 1- 
take on

1
to -24

Now

3
4

Hence, a fortiori,
77 (x, y) > 0 when

— 1

Formula (35) gives a better estimate than (34) when 
77 > 9. Thus we see that the region in the neighborhood 
of z = —/? where 77 (a:, y) < 0, contracts indefinitely when 
7? —> 00. Its maximum diameter is
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The arcs on which R = 0 contract steadily to zero in 
the following sense. Consider the arc of R — 0 on which 
— 77 < æ < (77 > 1) which arc we denote by Rn. Let us
imagine that Rn be moved parallel to the real axis a 
distance of one unit to the left. The transferred curve will 
then completely enclose Rn + i, the two curves having only 
the point z = —n — 1 in common. This follows from (9). 
In fact, if z+1 is on Rn then R(x+l,y) = 0 and

Æ (æ, y) =----- 2 > 0 ’

i. e. the point z lies outside of Rn + i provided z 7^, —n — 1.

Part II.
Investigation of ip' (z).

4. Formal properties of ip' (;). In order to continue the 
discussion profitably we shall need to investigate the 
derivative of ip (r) in some detail and especially the 
location of the points where ip' (z) = 0, i. e. the non
singular points where the mapping ceases to be conformal.
We have

(36)

00

The most important relations satisfied by ip' (c) are the
following:

(37) ,// (z + 1) — î// (z) = — ,

(38) v' (z)+y,'(i—z)
n2

sin’2 n

lim(39)
oc

= 0.
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We set

»1 — 1

(40) 1112 i/>' (m z) = y ifi' (z + —} .

with
i// (z) = r (x, y) -■ ij (x, y),

(41) 7 \ \ (æ + /?)2 — J/2i\x, zz) = r 19 ,
~ [(æ + n)2 + y '

(42)
X

• / \ \ rr + /?
'«+»>=

Of the relations satisfied by r(x,y) and j (x, y) which are 
a consequence of (37)—(40) we notice the following:

(43) r(x + 1 , z/) = r (x, y) — >

(44) ./ (a: — 1, y) = ./ (.r, z/) + z >
(æ + y-y

(45) r(a?, z/) = — r(l x , 9 sin2 yra'c7?2tt z/— cos2 7ix sir n ii
— x, y) + tt2---------r . 2 . , a------- 52-----------[sin 7TX + sir 7vy\

(46) j (a-, z/) — 7 0 — ,V)
;t2 sin 2 tix sh 2 ;t y
2 [sin2 7Tx + sh2 7T z/]2 ’

»1 — 1

(47) nr r (mx, my) = \ r (x + — , z/^
n = 0

\ nz /

(48) nr ,j (mx, my)
ni — 1

( -U77 læ + ,
\ m /

For certain special purposes we shall need the factorial
series

(49)
X
\ ' n!

& (n + l)z(z+l) . . (z + n)’ 
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which converges when Ûi (z) > 0. This series is easily 
obtainable from the corresponding series for ip (z3-h)— ip(z) 
in formula (22) by dividing by h and then letting h tend 
to zero.1

It is trivial to notice but useful to remember that

(50) r(x, y) = . R(x, y) = I (x, y)Ox oy

d o x
(51) j (x, y) - — ^-R(x,y) = — I(x,y).oy ox

5. ip'(z) in the right half-plane. It is obvious that

(52) sgn,/'(æ, y) = —sgn y when æ > 0.

It is further clear that ip'(x) is real positive when x is 
real. From these two observations we conclude that 
ip'(z) 7^- 0 when Di (r) > 0. In the expression

iy. The result can be written in the formwe set z

Thus tv = xp' (") maps the line x = 0 in the jz-plane 
upon a curve J in the m-plane

u = r (0, y), n = j (0, y),

See also Nörlund, 1. c. p. 243.
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which curve lies entirely in the half-plane u < 0 except for 
the point (0, 0), where J is tangent to the p-axis. J does 
not intersect itself for r (0, y) increases steadily with | y | ; 
it consists of two branches symmetric with respect to the 
negative zz-axis, which is the asymptote of both. Let the 
region outside of J be denoted by J. It will be proved in 
§11 that ip" (z) 0 in ./ + J. Thus iv = ip'(z) maps the
half-plane 9Î (z) > 0 conformally upon z/. Thus every value 
in z/ is taken on once and only once by ip' (z) in the right 
half-plane. A simple calculation shows that

z;| < = 1.06916

on J; hence the values not taken on in 91 (z) > 0 have 
negative real part and a numerically small imaginary part.1

In the hall-plane 9f (z) > 1, /• (t, z/) > 0. To see this we 
notice first that 

in view of formulas (43) and (53). Thus the curve r(x, zy) = 0 
does not intersect the line x = + 1. On the other hand, 
there are two branches of this curve in the right half
plane which pass through the origin, where they have the 
slopes ~r 1 and — 1 respectively, and which admit of the 
imaginary axis as their asymptote. Hence the branches of 
r (x, y) = 0 which lie in the right half-plane must be en
closed in the strip 0 < x < + 1. It follows from formula 
(39) that there are no other branches of the curve 
r (x, y) = 0 in the right half-plane. Hence r (æ, zy) > 0 
when x >4 1.

1 To obtain the estimate given lor | v | we replace each term in the 
series (42) by its maximum value for x — 0 and sum these maximum 
values. The estimate is rather crude; | v | probably does not exceed 0.8.
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6. tp' (z) in the left half-plane. We now turn our atten
tion to the left half-plane. Let k be a positive integer; then

(54) ( k,y) - 2_i (n* + y^ y2

X

or

(55)
k 

r (— A, y) = JV 

n = 1

2. 2.« — y /n a (n2+y2)a+ (0,y)'

In view of (53) we can conclude that r(—k, y) < 0 when 
I y I = k- When I y I < k we have

for all values of y. Further

X
r (— k, y) < V , 2 , '722 + r (0, y) 

—/ (« +y)Il — 1
1= -2 + 2 r (0, y) = — - 2 — < 0. y- srrny

Hence
(56) r(-k,y')<0, A- = 0,1, 2,...

(57)

X

./(—A, y) =

Consequently ip' (z) 7^ 0 on all the lines 

(n = 0, 1, 2, . . .) and

n — k + 1

n
2

sgn 91 ip'(—n iy)\ = — 1,

sgn(59) sgn y.
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7. Introduction of the cells. The lines .r = — — (n = 0,

1,2, . . .) and y = 0 divide the left half-plane into an 
infinite number of cells

77 7? —1
Cn : - 2 < æ < 2 , y > 0,

and
77 77—I

Cn :~2<r< 2 , y < 0.

T h e o r e m : Each of the cel Is C2Å—1 and C‘2k — 1
contains one and only one complex zero of (")•
The cells C 2 å a n d C 2 à do not contai n a n y zeros
(Å- = 1, 2, 3, . . , )■

In order Io prove this theorem we trace the image of
the boundary of a cell Cn by the transformation iv — ip' (z) 
avoiding the vertices of the cell at the singular points in 
the usual manner. For the following discussion consult 
Fig. 1 which gives a schematic representation of the situa
tion. The line drawn in full corresponds to the case when 
n is odd and the doited line to the case when n is even.

Let the image of the line segment x = — — , 0< y be 

denoted by Jn. In view of (57) and (58) the curve .La- 
lies entirely in the third quadrant of the zp-plane; it is 
asymptotic to the negative real axis and tangent to the p- 
axis at the origin. According to (59) .Lå—i lies in the 
lower half-plane; starling from a point on the positive real 
axis, it ends in the third quadrant at the origin and tan
gent to the p-axis. .Lå-2 and .Lå—i intersect at least once 
in the third quadrant forming a loop together; it is prob
able that .Lå—i and .Lå do not intersect each other, also 
that the curves Jn do not intersect themselves, but this is 
immaterial for our present purpose.
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The lower boundary of the cell is mapped upon a seg
ment of the positive real axis which is in parts covered 
twice when n is odd. Finally a small circular arc | z + k + 1 |

lower half-plane, and an arc \ z -p k \ = y el", < V < n, is

mapped upon a contour in the upper half-plane. Keeping 
these facts in mind or consulting the figure the reader will 
see that the argument of ip' (z) remains unchanged when 
we trace the boundary of C-ik but increases by 2;t along 
the boundary of C211—1, a result which suffices to prove 
our theorem.

Vidensk. Selsk. Math.-fys. Medd. VIII, 1. 2
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We shall prove in § 11 that ip" (z) 0 in Cqa- for all 
values of k. It follows that ip" (z) maps the interior of 
C\>a conformally upon a region in the lower half of the 
m-plane a region which, however, may partly overlap itself. 
The map of C27,—i is neither conformal in the interior nor 
on the boundary. Since ip" (—k—1-H)<(), ip" (—k—< 0, 

ip" (—k — e) > 0 and ip"' (x) > 0, where k is a positive in
teger or zero, e > 0 and x is real, we conclude that ip" (z) 
vanishes once and only once in the interval (—k—\,—k) 
and, in fact, on the right half of this interval. We have 
also noticed that the curves .fok—1 and J2Å-—2 intersect 
in the third quadrant where they form a loop. This indi
cates that ip" (z) vanishes at least once in the interior of 
C2*—1. Thus we have at least 3 zeros of ip" (z) in the strip 
— k— 1 < x < —k for every integral k > 0. We shall see 

later that there are exactly 3 zeros of ip" (z) in this strip.
8. The curves r = 0 and j = (). In order to gain 

additional information regarding the map corresponding to 
iu = pi' (z) we consider the curves r (x, y) = 0 and ./ (x, y) 
= 0. The points z = —n (11 > 0) are double poles of ip' (z); 
hence they are double points of the curves r = 0 and j = 0. 
The r-curves have the slopes + 1 and —1 at z — — n, the 
/-curves have the slopes 0 and 00 at this point.

One of the j-curves through z — —11 is the real axis. 
Let the other j-curve through this point be denoted by jn. 
We have already seen that j (x, y) < 0 in C‘>n and > 0 in 
C2n (n = 1, 2, 3, . . .). This follows also directly from formula 

(46) which shows that j (x, y) < 0 if —//< .r <— 7/ + — , 

y > 0. Consequently jn lies entirely in Czn—1 + C2n—i- It is 
a closed curve which intersects the real axis at z — — n + 1 
and at the point where ip" (.1?) = 0. The curve jn grows 
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steadily with n in the following sense. Let us imagine that 
jn be moved parallel to the real axis a distance of one 
unit to the left. It will then have a contact with jn + i at 
z — —n; with the exception of this point, the transferred 
curve lies entirely within Jn + i- This follows from formula 
(44); indeed, if z+1 lies on jn then / (x + 1, y) = 0 and

2 x y
j (x, y) = — + 2^2 > 0 ’ (U > °) ’

i. e., the point z lies inside of jn + i-
It is possible to find upper limits for | y | on jn with 

the aid of formulas (44), (46) and (48). If y is fixed positive

yr2 sin 2nx sh 2Tty 2 ch Tty
2 (sin2 rtx + sh2 Tty)2, < sh3 it y '

The latter expression is less than 0.075 when y > 1. On 
the other hand, we can show by a simple but tedious 
calculation that J(3.5, 1) <—0.075. Further,

dj _
nO X

n„ V7 3(x + n)2 —y2
' .(^ + n)2 + y2j3

This expression is certainly positive when o S y S

Hence j (x, 1) increases with x when 

j(x, 1) <^/(3.5, 1) when 1 < x 3.5. We conclude,

p3 x.

Thus

with
the aid of (46), that

./(æ, 1) < j (3.5, 1) + x2 ~ < 0 sh it

when — 2.5 < x < 0, and we can obviously draw the same 
conclusion for the larger interval —3 < x < 0. Hence, 
I y I < 1 on j), ,/2 and j3. We now use (48) with m = 2, viz. 
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and set —3 < x < 0 and y — 1. It follows that |y|<2 
on j4, /5 and j6. Repeating the argument we conclude suc
cessively that I y I < 4 on j7—jl2, | y | < 8 on /13—j24, and 
so on. These limits for | y | on jn are probably not very 
good for large values of n; they could be improved upon, 
but the task is rather laborious.

We now turn our attention to the curves r = 0. We 
have already discussed in §5 the branches of this curve 
in the right half-plane. Two arcs of r — 0 start at z — —n 
in the interior of jn. These arcs cannot remain inside of 
jn; if they did so, they would have to intersect on the real 
axis forming a closed curve which, however, is impossible 
since ip' (z) does not have any real zeros. Hence these two 
arcs have to intersect ,/n and obviously at z = zn and zn where 
ifj' (z) = 0. These two arcs must pass through z = —n — 1 
since there is no other place where they can intersect the 
line x = —n —1, in view of (56), and they cannot wander 
off to the point at infinity.

We refer the reader to Fig. 2, which gives a schematic 
representation of the curves r = 0 (drawn in full lines) 
and j = 0 (drawn in dotted lines).

It is possible to find limits for the curves r = 0 which 
are somewhat more satisfactory than those found for the 
,/-curves. Let rn denote that arc of r = 0 on which 
— n < x < —n I- 1 (n > 1) and y > 0. We notice first that 
rn expands with n just as jn does. If z-\~ 1 lies on rn, then 
r (x + 1, y) — 0 and

provided | z/1 < — x. That this proviso is verified follows 
from formulas (62) below. Hence, we are justified in con- 
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eluding that the point z lies inside of rn + i, if z does not 
coincide with one of the poles.

It follows from (41) that r (.r, y) > 0 if all the following 
inequalities are simultaneously fulfilled:

(60) (x + z/)2— y2 > 0, 77 = 0, 1, 2, ...

These inequalities determine a sector of opening — in the 

right half-plane, and, in addition, a set of squares in the 
left half-plane each square having a line segment (—n—1, 
— n) as one of its diagonals. Thus rn lies above the polygo

nal line joining z = —n, —/? + —+ and —77+1.

A partial limitation of rn from above can be found 
with the aid of (45). If x < 0, r(l—x, ij) > 0. Hence, 
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r (x, y) will be negative when x < O and sin2 ttx ch2 n y — 
cos2 ttx sh2 tt y < 0, or 

(61) r(æ, y) < 0 when x < 0 and tan2 ttx < th2 Try.

This inequality implies that rn lies below the corresponding 
arcs of the curve

tan2 Træ — tli2 Try or ?/ =
1

2 Tt log tan TT

This curve consists of infinitely many arcs, passing in pairs
through the points z = —n where they have slopes equal

to ±1, and having the lines x = as asymptotes.
This method of course does not give any upper bound for 
rn in the interval — n + 4 < x < — n + 4 .

4 — 4
In order to fill this gap we use the same method as

above for jn. We have

sin2 7tx ch2 TT y — cos2 jtx sh2 tt y
[sin2 ttx + sh2 Try]2

<
ch2 tt y ’

when y is fixed. Let us set y = + 1 and vary x on the 
interval (—k,—1) where k is a positive integer which will 
be chosen below. Then

r (æ
2

, 1) < — min r(l —x, 1) + -^—. 
ch TT

We have
00

dr
r

2 y^ + n)^-(x + n^3<0
ox & [,f-+(x+nyy

if 0 < |/ 3 y < x. Thus
— k < æ < — 1. Now

r(l—x, 1) > r(l + k, 1) when

whence

k2—1
(k2+l)2’
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r(æ, 1) <
9 9

2 sh2 yr ch2 n
/? —1 1

(p+ir 2*

The expression on the right hand side is negative for 
2c < 12. Thus
(62 a) r (x, 1) < 0 for — 12 <.r < 0.

Using (47) with m — 2 we conclude that

(62 b) r(x, 2) < 0 for — 24<æ< —12,

(62 c) r (x, 4) < 0 for — 48 < x < — 24

and so on. These estimates are probably rather crude, but 
they seem to justify the conclusion that the maximum 
ordinate on rn grows considerably slower with n than the 
maximum ordinate on jn.

The curves r = 0‘and / = 0 divide the z-plane into an 
infinity of regions. Four of these are infinite in extent, all 
the others are finite. All the finite regions and the infinite 
ones in the right half-plane are mapped conformally and 
without overlapping upon a complete quadrant of the iv- 
plane by the transformation iv = ip' (z). The numbers plot
ted in the different regions of the figure indicate which 
quadrant corresponds to the region in question. The other 
infinite regions are mapped, the upper one upon the third 
and the lower one upon the second quadrant, but lhe map 
is not conformal and overlaps itself infinitely often since 
lhe regions under consideration contain all the complex 
zeros of ip" (z).

In order to build up the corresponding Riemann surface 
we can proceed as in § 17 below. To carry through the 
discussion properly would, however, require rather elabo
rate considerations so we restrict ourselves to these 
indications.
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9. Lower limitation of the zeros of (z). We shall now 
proceed to a further delimitation of the zeros of ip' (z). 
The inequalities obtained for /•(&*, y) and / (.r, y) in the 
preceding paragraph give upper limits for z/n, the ordinate 
of the zero zn of ip' (z) in the cell Cn. In particular, for
mulas (62) imply that

where as usual [u] denotes the largest integer less Ilian or 
equal to u. This estimate is of course rather unsatisfactory 
for large values of n, but shows nevertheless that yn grows 
rather slowly.

A lower limit for yn can be obtained with the aid of 
formulas (38) and (49). Il follows from (49) that, when 
Ût(c) > 1,

In virtue of (38) we have that ip'(z) 0 if

sin2 7iz > 11/(1 -z)

and, using (64), we see that this is a fortiori the case when

or
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(66) I sin2 tt z I < 6 I 1 — z |.

Thus the two branches of the curve C

(67) sin2 ttx + sh2 ny — 6|/(x—l)2 I y2

for x < 0, together with a connecting segment on the 
imaginary axis, bound a simply-connected region such 
that W' (") 0 on R + C. A fairly simple reckoning shows
that 4-- < 0 on the upper half of C, i. e., y decreases 

dx
when x increases.

We can now obtain a lower limit for yn os follows. 
Evidently yn exceeds the ordinate of the point on C whose 
abscissa is —n + 1 ; this ordinate is determined as the 
real positive root of the equation

sh n y = J/ 6 V'+ y2 •

This equation implies that

sh zry > J/6n,
or

y > log |/6 7z + l/ôzi 1 > — log 2 |/6 zz.
TT TT

Hence
(68) yn > 1 log 2 |/ö 7Z .

71

In particular, yx > 0.5. For small values of n, formulas 
(63) and (68) give comparatively narrow limits for yn.

10. The asymptotic distribution of the zeros of ip'(z). We 
shall now take up the asymptotic distribution of the zeros. 
We introduce the function

(69) </>(-) =~-~sin Ttz

and proceed to prove the following
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Theorem: (D (c) has exactly one zero in each of 
the cells C?« —1 and C211—1 and no zeros in the cells 
Czn and C^n- If we denote the zero in C2n—1 by tn 
and set £n = 5n + ^n, then — n 1^. < £n < — n + - , and 

2^ 4

3 Let tn he the center of a circle rn of radius
zz + 1 

Then each circle rn with 11 > 11 contains one and 
only one zero of ip' (r).

We postpone the proof of formula (70) until the rest of 
the theorem has been proved. We readily verify that

3ttn < arg O (—n + zz/) < — ,

3 zz — + i y\ < 0,

when y > 0 and n — 0, 1, 2, ... Further <Z> (a?) > 0 for x 
real and negative. These relations are exactly the same as 
those satisfied by z//'(z) on the lines in question; they 
permit us to repeat the proof given in § 7 with (z) 
replaced by tf)(z); this suffices to prove the statement 
about the cells.

To verify that —zz + — < tn < —n we notice that

SR [ sin2 tt (x + zz/) ] = ~ (1 — cos 2;ra? ch 2 Try) 5^
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if cos 2nx > 0, i. e., if —n + < x < — n + — . On the4 — — 4
other hand,

9t [tt2 (1 — z)] = /r2 (1 —x) > 7T2

when æ < 0. Hence £n must be limited in the way just 
mentioned.

Let £ = £ + (£ < 0, q > 0) be an arbitrary zero of
d) (z). We shall study d> (£ + w) = J (D (£) when | m | = r, 
a fixed number. We have

2 sin2 7T £— sin2 n (£ + ft>) , w
sin2 n £ sin2 n (£ + co) (1 — £) (1 — £ — w)

ft) sin tt ft) sin tt(2 £ + oj) 1
1 —£ to sin2 tt(£+ ft>) 1 — £ — ft)

We now assume r < 7. Then
4

d) (£ — w) | > M
T-l

9 1/5 sh7r(2iy—r) 1
ch2 n (/;—r) I 1 — £ I — r

The fraction involving the hyperbolic functions increases 
steadily with when r is fixed, and decreases when r 

increases if is fixed > - . Thus the fraction will be made

as small as possible if we give its least value and take 
1

In order to obtain a suitable lower limit for the bracket 
we set £ = £n with zz > 11. This implies | 1 — £ | — r > 11, 
and, since ijn > ~ log 2tt |/zz,

> z/n > — log 2 7T |/11 > 0.96.1

1 In order to obtain this estimate, use the same type of argument 
as in the proof of formula (68).
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With these restrictions upon £ and m we find that

(71)

In view of formulas (38) and (65) we have

(72) ip' (;) (z) + P(z) where P(z)| <

9

(1-z) (2-z)

when Of (z) < 0. With each of the points £n, n > 11, as 
center we lay a circle J'n of radius rn. We shall determine 
rn in such a manner that

(73) <P(z)| > |P(z) on rn,

and impose in advance the condition

z — £n ~T~ Mn (| røn | — i’n) on / n we have

rn < — . Setting
4

from (65) and
(71)

9

P (tn + Mil) I < (1 Mn) (2 £n Mti)

Thus (73) will be fulfilled if

We now use the assumptions n > 11, rn < ~r together
4

with
the fact that K 0.445. These premises imply that 

1 — £n I > 11.25, | 2 — £n | — rn > n ~ 1, and

1 By imposing more severe restrictions upon Ç and co we can get K 
as near to 2tt as we please.
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3Consequently (73) will hold for n > 11 when rn = —-—.

But then it follows from the theorem of Rouché that each 
circle rn contains one and only one zero of ip' (z).

It remains to prove formula (70). We begin by deter
mining a set of numbers £m,n satisfying the following 
conditions

(74)
sill 7T +1, n — 7T |/1 '»m, n •> tl, n d- ~ »

— n < 9Î (£m, n) < — n + 1 , 3 (£m, n) > 0.

Here m, n — 1, 2, 3, ... and |/1— z means that determina
tion of the square root which equals to 1 when z = 0. 
We have

^2,n = —n + ^+Hog 7r|/n + - + 7r|/n + - —^2 ,

We easily verify that

For m = 2 we have
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tn — ti, n q log /i, COS - (tn—t2,n) > C2 V 77 ,

I I 1 — tn + /1 — ti, n I > C3 [/ 71 ,

independent of n.

&,n) < 2 c., c
and

where the
Hence

tn t2, n

c’s are positive constants

Cl

3

• 71 , sm (tn
log 71

71

r r logn

71

Repeating the argument with m = 3 we see that

t ç. - i „ log 71
('6) tn“ t3,n < C2-V-

71"

Combining formulas (75) and (76) we get formula (70).
II. The zeros of ip" (;). In §§ 5 and 7 we made certain 

statements regarding the zeros of ip" (z). We shall now 
prove the following

Theorem: ip" (z) has exactly three zeros in each 

of the strips — n + - < .r < — 71 + 1 (n = 1, 2, 3, . . .) of 

which one and only one is real. There are no 
other zeros.

We begin by proving that

(77) sgn 3 11//'(—n + û/)j = —sgni;

for 71 = 0, 1, 2, ... We have from (53) and (55)

3 (— 71 + iy)j = — r (— 7i, y)

= 2 17 3;n2~.V2 _ 1 _ ^3 ch_7T l]
(7ii2+y2)3 y3 sh3zry’
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where the finite sum is to be suppressed when n = 0. This 
expression clearly has opposite sign to that of y when 
I y I > n I' 3. If I y I < n \/ 3 we have

- 3 [ip" (— n + iy)] < 2
V ni = i

3 ni — y

C,h3^ < 0 
sh' Tty

This completes the proof.
We shall now prove that the variation of the argument 

of ip" (z) is zero when z describes the perimeter of a large 
square with vertices at the points n (+ 1 ± 0 avoiding the 
point z — —n by a small semi-circle to the right of this 
point. This contour contains n triple poles of ip" (z), fur
ther at least 3/z zeros, namely, at least three in each of the 

strips — m + < x < — m + 1, m = 1, 2, 3, . . ., n, as we 
have seen in §7. If we can prove the statement about the 
variation of the argument then the theorem follows 
immediately.

In the neighborhood of z = oo in the sector |argz|
— t we have

r (*) = -1 + 0 .

Now let us start with z at + n and describe the contour 
in the positive sense. Then iv = ip" (z) starts with a small 
negative value, and its argument decreases from n to ap- 

proximately — - when z goes from + n to n (— 1 + 0- 

When z goes from n (—1 + 0 to —n~ei, id remains in 
the lower half-plane in view of (77), and when z = —n + 

|m| is large and arg w is nearly —since
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V<" (--) = - (T+2^ + '-v (-- + n).

When z describes the circular arc |c + z?| — c, O < arg 

(c + zz) <-, Ilv I remains large and arg iv increases Ironi 

-----to + re. Consequently arg tv is back to its initial value 

after we have described the upper half of the contour, and 
by reasons of symmetry, arg iv will return to the initial 
value after we have described the lower half of the con
tour. This completes the proof of the theorem.

Part III.
The conformal correspondence w = ip (z).

12. The /?, /-net. We shall now return to the psi-func- 
tion itself, and consider the question of how its values are 
distributed in the plane. We shall attack this problem from 
two different angles. First, we have obtained in Parts I 
and II of the present paper a variety of results which 
permit us to give a rather detailed discussion of the curves

SR [ip (z)] = const., and 3 [ip (z)] = const.

We shall give this discussion in §§ 12—15. Secondly, we 
try to complete the information so obtained by numerical 
computation of the psi-function for some values of z. 
Finally, in § 17 we discuss the Riemann surface corre
sponding to iv = ip (z) in the light of the results obtained 
in §§ 12—16.

For the whole discussion the reader should consult 
Fig. 3, which gives a representation of the curves in question. 
In the upper half-plane the curves
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R(+, y) = c, with c = — 2, —1.5, — 1, ...,+1.5 and + 2, 
are traced ; in the lower hall-plane we have marked the curves

Z(x, y) = / with y = —4, —3.5, —3, . . ., —0.5 and 0. 
In addition we have plotted in dotted lines the curves of 
the two systems which pass through the four zeros of if.>' (z)

3 Vidensk. Selsk. Math.-fys. Medd. VIII, 1.
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which are nearest to the origin. The diagram is based 
upon the results of §§ 12—16, and is believed to give a 
fairly accurate picture of the situation, but, naturally, it 
must not be trusted too far.

In the sector | arg z | < n — e we have

/1 \
ip (z) = log z + 0 .

It follows that within this sector and sufficiently far 
from the origin, the curves R = c correspond to large posi
tive values of c and each curve lies between two circles 
|z| = ec—d and |z| = ec+d. The curves / — y on the 
other hand, correspond to values of / between—n + e and 
tt — e and are asymptotic to the lines arg z = y.

In the remaining sector we have

ip (z) = log (1 z) — 7t cot :rz — 0

Here we have evidently quite a complicated situation; the 
net corresponding to log (1—z) is distorted by the super
imposed net due to —ttcoïtiz.

The points z = — n (n > 0) are simple poles of residue 
— 1 for ip (z). Let ;V6 be a small neighborhood of z — —n. 
Any /Tcurve in 2Ve will pass through z = —n where it will 
have a vertical tangent. If c is sufficiently large positive 
(negative) the curve R = c will be closed in ATf and located 
to the left (right) of the vertical tangent; further it will be 
almost circular in shape. Any /-curve in will pass 
through z =—n and be tangent to the .r-axis. If y is 
sufficiently large numerically, the curve I — y will be closed 
in and almost circular; it will be above or below the 
.r-axis according as y is positive or negative. The curves 
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of the two nets have a perfectly definite order in Ne. Thus, 
for example, if we describe the upper half of the curve 
R — —M (M large positive) in Nf starting from z = — 71 + $ 
(d real positive) and ending at z — —n, then v = 
will be steadily growing along the curve from the initial 
value 0 to the final limit + oc, every intermediate value 
being taken on once and only once. Similarly with the 
/^-curves.

Any curve R = c will consist of an infinity of separate 
branches, beginning and ending at z = — n, one branch 
for each pole. Any curve I = y will consist of an infinity 
of branches, which, however, may and as a rule do have 
end-points in common. Such a branch will join a pole 
either with itself or with another pole or with the point 
at infinity.

Through the points zn where i/f (r) = 0 will pass two 
and only two branches of each system. If we set

(78) I/J (Zn) = iun = lln + i Dn ,

it is two branches of the curve R = un and two branches 
of I = vn which pass through zn. These curves are of 
fundamental importance for the whole discussion and will 
be considered at length in §§ 14 and 15. No other curve 
of either system can intersect itself or have a non-singular 
point in common with any other curve belonging to the 
same system.

We have discussed the curve R — 0 in some detail in 
§ 3. This curve was found to consist of infinitely many 
separate ovals Rn, one for each pole z — —n, n 0, all 
being outside each other in accordance with the inequali
ties (30) and (31). Indeed, these inequalities prove the 
existence in every strip — n — 1 < x < — n (n > 0) of a sub- 

3* 
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strip where 1? (.r, y) > 0. Further, formulas (25) and (35) 
prove that the oval Rn contracts indefinitely to zero when 
n -> + oo, and we have shown at the end of § 3 that this 
contraction process is monotone in a perfectly definite sense.

Let us now turn to a curve R — c < 0. This curve 
clearly consists of separate ovals Rn(c), namely, one and 
only one oval inside each oval /?n (/? = 0, 1, 2, . . .). Thus 
the ovals /?n(c) are outside of each other when c < 0. 
They will contract indefinitely when n-> + co and the 
process can be shown to be steady or monotone in the 
sense above mentioned. The same conclusions will hold 
for sufficiently small positive values of c, but will cease to 
hold when c is large. Let Rn (c) still denote that branch 
of R — c which goes through z — —n. If c is large we 
can no longer affirm that the Rn (c) are all outside of each 
other, but they will have this property for sufficiently large 
values of n, i. e., if we disregard a finite number of the 
branches the remaining ones will be outside of each other 
and of the disregarded branches1. Our previous conclusions 
are valid for the residual infinite set.

13. Differential properties of the net. Now we turn our 
attention to questions of increase and direction. We have

r (æ> y) I (x, y),

./(t, y) =
6 

dy
öR (x, y) = n I (æ, y).OX

In a region where r (æ, y) > 0, /? (.t, y) increases with x 
and I (x, y) increases with y. In a region where j (x, y) > 0,

1 In order that the Rn (c) be outside of each other for n > m it is 
necessary and sufficient that c <. um. This follows from the results stated 
at the end of § 14.
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/? (,r, y) decreases when y increases and /(rr, y) increases 
with y. At a point z = z0 — x0-\-iy0 where r (x, y) and 
j (x, y) have the same (opposite) sign, the slope of R(x,y) 
= c is positive (negative) and the slope of I (x, y) = / is 
the negative reciprocal of the slope of the B-curve. Let us 
deline as positive direction of the tangent of7?(x’,y) 
— c at z0 that direction in which Z(x, y) increases, 
with a similar definition for the /-curve. This direction is 
uniquely defined unless z0 happens to be a zero or a pole 
of ip' (z). Let (z0) be the angle which the positive direc
tion of the tangent of [ip (z)] = -H [ip (z0)] at z — z0 makes 
with the positive direction of the real axis, the angle being 
measured from the axis to the tangent; and let y2 (z0) he 
the corresponding angle for the /-curve S [</>(")] — 3 [t/z(z0)]. 
Then we have

(79) 5Pi(r0) = ar§ ’/(-o) (mod. 2tt),

(80) y2(z0) = — arg<(z0) (mod. 2/r).

Fig. 2 suffices to give us a general notion of the mode 
of variation of arg 1// (z). This figure, it will be remem
bered, is based upon the discussion of ip' (z) in §§ 5—8. It 
will perhaps be useful to collect at this point some of the 
consequences of this discussion.

It has been noticed that j (x, y) is negative in all the 
cells C*2zi and in the first quadrant and positive in the 
symmetric regions below the .x-axis. This implies that 
R (x, y) grows with | y | in these regions when x is kept 
fixed. In particular, this will be the case on the boundary 
of any one of the cells, hence1

1 In order to obtain the lower limits in (81) and (82) use formula (29).
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(81) /<(— n, y) > xf) (» - 1),

(82) y)>v'(»+()• (n = O, 1, 2, . .)

In that part of C?n which lies above rn, we have 
3 7T TT

7i < g>L(z0) < — and — < y2(r0) < tt; below rn we have
< 5?1 ("o) < 777 ancl 0 < 5P2 (*o) < | •

The /^-curves have vertical tangents on jn, horizontal 
ones on rn and rn1. For the /-curves the situation is of 
course reversed. Finally, we notice that any vertical line 
which does not intersect any of the curves jn, will either 
intersect an arbitrary curve R = c in two points symme
tric to the r-axis or not at all.

Id. Qualitative description of the net. We shall now lake 
up the properties of the net in the gross. We aim at a 
qualitative description of the net which will tell us how 
the separate branches of the different curves go, what 
singular points they join, how they separate the plane into 
regions, and so on. We shall see that the solution of this 
problem depends essentially upon a special case of the 
same problem, namely how the critical curves through the 
zeros of (r) behave in this or that respect.

We begin by considering the /-curves. Let us inspect 
the branches of the /-curves which radiate from z — —n 
(n > 1). One of these curves is the real axis. Now give / 
a small positive value. We conclude by reasons of con
tinuity that there is a branch of the curve / = / which 
joins z — — n with z = — n 1 and which lies entirely 
within a rectangle — n < x < —n 1, 0 < y d(;z) where

1 We denote the arc of r — 0 which lies in the first quadrant by 
Tq and let rn mean the curve symmetric to rn in the lower half-plane 
(n = 0, 1, 2, . . .).
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()(;')-> 0 with /. There is also a branch of the same curve 
which joins z = —n with z = —n — 1, but we disregard 
this arc for the present. Let yn be the largest value of / 
such that for / < /n the curve I = / has a branch In (/) 
joining z — —n with z = —n + 1 without passing through 
any other singular point. I claim that In (yn) goes through 
a zero of ip' (z); to be more specific, I assert that In(/n) 
goes through z = zn, i. e. Suppose this were not
so and consider that arc of the curve I = + 3 (d small 
positive) which starts at z = —n and on which ,r + n is 
small positive when y is small positive. Since ip' (z) 0
on In this arc will be uniformly near to In (j'n), i. e., 
we can tind an e = e(<5) which tends to zero with d, such 
that the distance between the two curves nowhere exceeds 
e1. But then this branch of / = must end at z —
— n 1, which is contrary to the definition of

Thus In (,/n) goes through a zero of ip' (z). Suppose 
that this zero were not zn- Then In (;'n) which joins z —
— n with z = — n + 1, must intersect either the line x = —n 
or the line .r = — 77 4 1 in two distinct points with posi
tive ordinates. This, however, is impossible since /(—m, y) 
is steadily decreasing when y increases, m being a positive 
integer or 0, in accordance with (56). Hence In()'n) passes

1 That this is actually the case follows from the following considera
tion. Leaving out two small arcs at the end-points of In(yn) we can 
cover the residual arc by a finite number of circles such that: (i) every 
point on the arc is interior to at least one of the circles, and (ii) the 
interior of any one of the circles is mapped conformally and without 
overlapping upon a region in the m-plane by the transformation n> = 
The image of the set of points which belong to at least one of these 
circles is simply-connected and contains a segment of the line v = yn, 
hence also a segment of v = yn J if <f is sufficiently small. This 
proves the assertion except near the end-points of In(yn). But these do 
not cause any difficulties since the curves under consideration are tan
gent to each other at these points. This completes the proof. 
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through zn and does not go through any other zero of 
ip'(z). Further, = un- Incidentally we notice that In(pn) 
does not intersect the lines x — —n or x = — n + 1 except 
at the end-points.

Now let z+1 trace the arc In(vn) from —/? to—n+1. 
Then z traces an arc /,* from —n — 1 to —n. On this latter 
arc I(x,y)>vn except at the end-points where equality 
holds, as we see from formula (10). Let I)h he the region 
hounded by /„ and the real axis between — n— 1 and 
— n. The point zn + i may be located (i) within /XI, or 
(ii) on In, or (iii) outside of Dn. Whichever be the actual 
case, we shall prove that un < Vn + i-

Suppose case (i) be realized, and consider the four 
arcs of the curve I — un + i which start at z = zn + i- We 
know that two of these arcs form the branch In+i (Pn + 1) 
with end-points at z =—n—1 and — n. The other two 
arcs cannot lie completely within I)n. If they did, we should 
have two distinct arcs I — vn + i the ends of which would 
belong to a small sector | z + n | < ô, 0< arg (z +/?) < 
this is clearly impossible in view of the order relations 
between the /-curves in the neighborhood of a pole. Hence 
these two arcs must intersect In at a point where / (x, i/) 
> vn, and thus pn + i > In cases (ii) and (iii) we see 
almost directly that the same conclusion is valid.

Let us now study the /-curves which emanate from 
z = 0 and of which the initial arcs belong to the first 
quadrant. Such a branch of the curve I — y will be de- 

signated by /0 (;j. As long as 0 < y < — , /0 (/) will remain 

in the first quadrant and go from z = 0 to z = oo, having 
the line arg z — y as its asymptote. That /0 (/) cannot 
intersect the positive imaginary axis follows from formulas 
(16) and (56), which imply that



On the Logarithmic Derivatives of the Gamma Function. 41

(83) I (~n, y) > ~ when y > 0, n = 0, 1, 2, . . .

When / > arc A)(f) intersects the imaginary axis
TT and proceeds to the point at infinity as long as / — — is 

sufficiently small. There exists a largest value, /’0 say, such 
that /0 (y) ends at infinity for ever y ; < /"q. .lust as ahove 
we prove that the curve /o(/’o) niust pass through a zero 
of ip' (z), and this zero must be zL. Suppose contrariwise 
that it would be z2 instead. Then /’0 = n2 and there exists 
an arc of an /-curve joining 2 = 0 with z = — 1 on which 
/ = n2. This arc together with the segment of the real 
axis from 0 to — 1 bounds a region I\ which evidently 
contains the point zt in its interior. Moreover, the four 
arcs of the curve I = vl which meet at z = zt must be 
enclosed in But this is impossible since n2 > v1; indeed,
if /’0 = n2 > then /0 (zz:) goes from z = 0 to z — zc en
tirely outside of Z)1 in view of the definition of r0. But 
there are only two arcs of I = which begin or end at 
z = 0 and only two such arcs which begin or end at 
z = — 1; if one of the former arcs is outside of 1)L, then 
there is at least one of the four arcs of / = starting at 
zt which does not end in the interior of Z)P We are thus 
led to a contradiction by assuming that Fo = z?2; in exactly 
the same manner we disprove the assumption that /’0 = vn, 
n 1.

Hence /'n = z\. We can now account for all the /-cur
ves which emanate from z = 0. As long as / < z\, /0 (/) 
goes from z = 0 to z = ; when y > /0 (y) is a closed
curve beginning and ending at the origin. The two types 
of curves are separated by arcs of / = vr, namely, /0 (z?t), 
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which goes from z = 0 over zL to oc, plus /L (px) which 
goes from z = — 1 over zt to 0.

We now pass to the second pole at z — —1. We de
signate by IL (/) that arc of the curve I = y which starts 
at z — —1 and on which arg (z + 1) is small positive when 
|z+l | is small. As long as o<y<ih, A (/) goes from — 1 
to 0. Thus if we return for a moment to z = 0 we see 
that the /-curves in a small neighborhood of the origin, 
I z I < ö, y > 0, are either of the type /0 (/), S or 
the type It (y), 0 < y < i\. The former curves begin at 
z = 0, the latter ones end at this point according to our 
present convention, which is in agreement with our previous 
way of orienting the curves with the aid of the positive 
direction of the tangent.

When 0 < y —< f, /t (y) joins z = — 1 with z = cc. 
There exists a largest value, /\ say, such that (y) has 
this properly for every y, i\ < y < Z\. As above we show 
that /\ = n2. Thus the branches It (y) join z = — 1 with 
z = when < / < u2, and when y > v2 they are closed 
curves beginning and ending at z = —1. The remaining 
/-curves which belong to the upper half of an e-neighbor- 
liood of z = — 1 are curves of the type /2 (; ) with 
0 < / < v2 which start at z = — 2 and end at z = —1. In 
this manner we can proceed step by step. The situation in 
the lower half-plane is symmetric to the situation just 
described.

We notice that

(84) 3 (Zn+'di <

Here the lower limit — could be raised somewhat; is

certainly greater than 2, — on the other hand
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(85) < Max I 2 th 7r?/ + 1 +4 J/2

and in general

(86) <
= Max

vn < Max I ( — n + —

n
^thng+iy^ 1 —

III = 1

These limits are unfortunately not well suited for numeri
cal estimates. That n is the true upper limit in (84) fol
lows from the following consideration. Let e be arbitrarily 
small positive and let n — s < v < n. There is a unique 
/-curve which admits of the line arg z = d as its asymp
tote, this curve is a branch of / = v. We know that any 
such branch when traced in the negative sense will ulti
mately lead us to a pole. Suppose that our branch leads to 
z = — m. Then we are dealing with Im (p) according to the 
nomenclature adopted above. But if Iltl (/) joins z = —in 
with z = oo then vm < / < + Hence the same inequa
lity has to be satisfied by v, i. e. vm + i > n — e.

We now proceed to discuss the fate of the /^-curves 
which emanate from the different poles, and start with 
z = 0. The corresponding arcs of the /^-system have been 
designated by Ro (c) in § 12. As long as c<—C, Z?o (c) 
remains in the right half-plane and intersects the positive 
real axis between 0 and +1. There exists a largest value 
of c, say, such that all the ovals /?0 (c) intersect the 
positive real axis as long as c < ct. As above, we prove 
that Ro (ct) passes through a zero of î// (z), and owing to 
symmetry it will have to pass through two conjugate 
imaginary zeros. The zero in the upper half-plane must be 
zt, i. e. cL = nL. Indeed, if Ro (cr) passed through any oilier 



44 Nr. 1. Einar Hille:

zero but zt, it would have lo intersect the line x — — — 

twice; this is impossible since /? (.r, z/) increases steadily 
with I y I along this line.

Let the point of intersection of /?0 (nx) with the positive 
real axis be denoted by Pp We can lind a point z = 
on the interval (—1, 0) where ip (z) = uL. Through the 
latter point passes a branch of R = uL. There is also a 
branch of the same curve which goes through z =—1. 
These branches must pass through z = zt. In order to see 
that this is really true, we notice that there are four arcs 
of the curve R = zzt which meet at z = zv Two of these 
have already been accounted for; one joins zt with P(, the 
other joins zL with the origin. Let us follow the remaining 
two arcs away from z < zt. None of these arcs can inter
sect the imaginary axis as there is already one arc of the 
curve R = z/L which does so and R (0, y) increases steadily 
with I J/1. Further, none of the arcs in question can wan
der off to infinity or end at the origin. We are thus sure 
that one of these arcs will intersect the real axis between

— and 0 and the other will intersect the line x = —— , 

y > 0. As R(x,y) is monotone on both lines there cannot 
be more than one intersection on each. The arc which 
intersects the real axis clearly joins z = zr with z = pt. It 
follows that
(87) izt = = Wf) > °-

The arc which intersects x = —— remains. This arc 

will pass through z = — 1 if we can prove that it cannot 
intersect the line x — — 1 at a point of ordinate different 
from 0. It clearly cannot intersect the real axis between

— 1 and — — . In view of (81) it is sufficient for our pur
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pose to prove that
(88) ih < ip (2).

Let ns consider the rectangle whose vertices are A = 0, 
B = iq, C = — 1 — i/j, D = — , where (> 0) is to be 

suitably chosen. It is clear that the curve R = zit intersects 
the polygonal line ABCD at least once. Hence nY < Max 
R (.T, y) on ABCI). Now R(x,y) is monotone increasing on 
AB and on DC. Hence zzt < Max R(x, y) on CB. The latter 
maximum can be estimated with the aid of the methods 
which we have used in the latter half of § 3. In view of 
(11) and (34) we have

R (x,< Max R (1 -x,t/) + ~~,sh 2 æ z/

when z lies on CB. Hence 

3 7T(89) 

7t

no matter how z, be chosen > 0. Now it will be proved 
in § 15 that it is always possible to find an such that

1 It follows from Table II in § 16 and the corresponding Fig. 4 that 
«1 lies between 0.1 and 0.2.

Hence (88) is actually true1.
We can now account for all the arcs Ro (c). When 

c < iit, Rq(c) intersects the positive real axis between Ü 
3

and P| where 9<P1< 2. When c > ut, R0(c) intersects
2 1

the negative real axis between p1 and 0 where —- > pr. 

The two different types of curves are separated and en
closed by lobes of Ro (zzt).
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At z = — 1 we have a similar situation. As long as 
c< ut, Rt(c) intersects the negative real axis between —1 
and pr and all these curves are enclosed by a lobe of 
/?0(zzL) /Vt (zzL). When c is somewhat larger Ilian zzis 
R{ (c) intersects the positive real axis beyond 1\. There is 
a largest value of c, c2 say, for which this is the case, and 
we prove in the same manner as above that c2 = u2. Thus 
all the curves /?t (c) with zzt < c < zz2 intersect the positive 
real axis between and P2 where ip (P2) = zz2. When 
c > u2, /?t (c) intersects the negative real axis to the left

3 
of z — —1, namely, between p2 and —1 where p2 >— — 

and ip (p>) = u2.
Finally, in the general case the curves /?n (c) fall 

into three classes: (i) Curves corresponding to 
c < iin ; these curves intersect the negative real axis 
to the right of z = —n between —n and pn, where 

— 7i + ~ < pn < — 71 + 1 and where ip (pn) — un- (ii) Cur
ves corresponding to un < c < un+\’, these curves 
in tersect the positive real axis between Pn and Pn +1 

where np- — < Pn <u + 1 and where ip (Pn) = un. (iii) 

Curves corresponding to c>iin+r, these curves 
intersect the negative real axis to the left of z = 
—zi, between pn + i and —n. The three different types 
of curves arc separated by lobes of the critical 
curves /?„ (zzn) and /?n(un + i).

15. Inequalities for tlie critical values. We have thus 
completed the qualitative description of the R, /-net. It 
remains to prove formula (90). For this purpose we resort 
to formula (22), which has not been used in the earlier 
part of the paper, namely,
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X

ip(z + /?) — ip (z) =
n = 0

(— 1 )" /?(/?-1) . . . (h — n) 
n - 1 r(c 1) . . . (c+ /?) ‘

Consequently, if z — x is real and positive

ip (a? + /?) — 7/7 (ar) — -

< I h I V 1 _ (I 711 + 1) (|/î| + 2) ... (I /i I + 7?)
ar 77 + 1 (ar + 1) (ar + 2) ... (ar + 77) 

n = 1

< I /■ I y ' (I l< 1+J) ■(I l±"> = 17»l (|ft 1+ 1)
2 x ——/ (ar + 1 ) ... (x + 77) 2 ar (ar — | /? | — 1 )

n = 1

provided x > | h | + 1. Hence

(91) 7/7 (ar T h) — 7/7 (ar) = - l+o(x,h)\,x
where
(92) |e(.r, 701 < ^J^|G[Gi)-when x> I h l + L

We now choose x > (| h | + 1) (2 | h | + 1) and set h = k : il. 
Then

I e (x, h) I < !

and
(93) R(x + k,l)—R(x,0) = - +P(x,h) where |P(ar,/7)|< J .

x •+ a*

In (93) we put x —■ 77 + 1 , k — — — , I = 7/ and obtain

(94) +

provided

when

3|//y24-^, and, a fortiori, if 
1/ 3
9 . Il is possible to replace (94) by
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/?('’+l’O)-K(', + -2’'/)>sh2^ 

as long as
TT 1

sli < 4(n + 1)

Suppose that we choose n and z; subject to the following 
double inequality

(95) 5^z2 + ^ < n < s1i2;tz/ —1, > Jy ;

then (94) implies that (90) is fulfilled for such values of 
n and Il is now obvious that when we give ourselves 
an n > 5, we can find an satisfying (95). Thus to every 
n > 5 there exists an for which (90) holds. We can 
verify by numerical calculation that (90) holds for = 1 
when n = 1, 2, 3 and 4. We obtain from Table I that

n 12 3

Br+2’9 0.3480 0.8096 1.1544

^0*+ 1) 0.4228 0.9228 1.2561

4

1.4386

1.5061

Since r~~ = 0.0117 we have verified our statement.Sil 2 5T
W e can obtain an asymptotic expression for iun = ip (zn) 

for large values of n with the aid of (19) and (70). The 
result is rather complicated and will not be given here; it 
permits us to conclude, however, that
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The inequalities obtained for the critical values ivn can 
be summarized as follows:

Theorem: Let zn and zn (77 = 1, 2, 3, . . .) denote 

the zeros of ip'(z) where —zz+ —< SR (zn) <—n + 1 

and set wn = ip (zn) — zzn + z z>n. Then

(98) " < ,,n <

(99) 7T
< l>n < ZM+1 < 7T,

where zz = 1, 2, 3, ... Further,

(190) Un

(101)

16. Numerical computation of ip(z). We can also attack 
the question of how the values of ip (z) are distributed 
with the aid of numerical calculation. Such computations 
are fairly easy to carry out on the imaginary axis; with 
the aid of the formulas in § 2 we can afterwards obtain 
values of the function on other vertical lines.

Formulas (17) and (18), namely,

7T 1 / 1 \ TC
HO, z/) = - coth + 1 \2,U) = 2

enable us to calculate the imaginary part of ip (z) on the 

lines SR (z) = 0 and —. The values on the lines SR (z) = zz 
1 “ .and zz + 9 are then obtainable with the aid of (10). It does 

not seem to be possible to get the values of I (t, ij) on 
any other vertical lines with the aid of the formulas in § 2 
without the use of (19).

Vidensk. Selsk. Math.-fys. Medd. VIII, 1. 4
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The situation with regard to It (æ, y) is rather different.
We have

00

(102) R(0,y) = -C + y2 V z ./—ïv
—J n(n y )

This series is not well suited for numerical work, nor 
does its sum seem to be expressible in terms of elementary 
functions. To obtain more rapidly convergent series we 
use transformations of Kummer’s type. Writing

Il = 1

00

(p > 2)

we easily see that

If I y I < 1 and k equals 4 or 5, this expression is quite 
suited for computations. When | ij | > 1 we can still apply 
the same method if we let the transformations apply to 
the remainder after a suitably chosen term of the original 
series. For certain values of y the series 

X

has a known value. Thus

St^ = 8 log 2-4, S2(l) = p S3(2) = || etc.

For such values of y we can obtain a rapidly convergent 
series in fewer steps, e. g.,
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The remainder after the first term of the infinite series 
contributes less than 10 ’7 to the value of R ^0, The 

sums Sp which are needed for the computations can be 
taken from Stieltjes’ table in Acta Mathematica, vol. 10.

Formula (103) becomes unmanageable when | ij | is larger 
than about 3. For such values we have to resort to for
mula (19), which is very convenient for numerical work. 
Using formulas (20) and (21) with m = 5 and substituting 
the values of the Bernoullian numbers we obtain

(104) R (0, y)= log I y I + 12\2

(104 a) Au I < 2079 y10 ‘

Using one or the other of these series we
puted the following values

have com-

0.505907, r(o, = -0.455210, R fo, = - 0.328886,

0.186352, = —0.113901, 7? (0, 1) = 0.094650,

0.444698, R (0,2)= 0.714592, R^0,^ = 0.827758,

77(0, 3) = 1.108907, 7?(0,4) = 1.391537.

The error in these values, barring unfortunate accidents, 
amounts to less than one unit in the last decimal place.

4*
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Knowing /?((),;/) and 7?(0, 2z/) we can compute 
R \^~, yj with the aid of (9) and (13). If we know R((),3y) 

in addition, we can obtain R y} with the aid of (9), 

(11) and (13). Finally, if we know (0, ?/), /?(0, 2 zy) and 
/? (0, 4z/) we can get R\^,y^ with the aid of the same 

formulas which supply the necessary number of equations.
In the adjoining Table I we have listed the values of 

i/>(a?+z’z/) for some values of x and y. The sign » in any 
place of the table indicates that the corresponding value 
has not been calculated; thus the imaginary part is given 
for only half of the entries. A last digit set in heavier type 
indicates that the decimal in question has been raised. 
The values listed above permit extending the table consider
ably. I11 Table II we have listed the real part of i/j(x+iy) 
at 40 different points in the square — 1 < x < 0, 0 < y < 1. 
This table illustrates the run of R (x, y) in the neighbor
hood of the critical point z = rt. The adjoining Figure 4 
is based upon this table; it shows the interpolated curves 
R — c for c = —0.5, —0.4, . . ., 0.5 and 0.6. In order to 
avoid crowding the figure we have left out most of the 
arcs of these curves in the lower half of the diagram. The 
dots in the figure mark the points where the values of 
R(x,y) have been calculated. The table and the figure 
together would seem to suggest that zt is near to the point

1 2zz — ——+ ~ and that uL is about 0.16.
o o

17. The Riemann surface of iv = ip(z). We can now 
form a fairly good idea of the structure of the Riemann 
surface corresponding to w — ip (c) and its inverse. The 
singularities of the inverse function z = ip^Çiv) are iv co, 
which is a transcendental critical point, together 
with all the points iu — ivn and iun. The latter points are
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Table II.
Values of R (x, y).

\ x 
y

— 1 3
4

2
3

1
2

1
3

1
4

0

i 0.5947 0.4633 0.4234 0.3480 0.2720 0.2303 0.0947
D O
4 0.5261 0.3272 0.2895 0.2324 0.1686 0.1169 -0.1139

2
3 0.5060 » 0.2265 » 0.1578 » - 0.1864

1
2 0.4711 0.0426 0.0311 0.1319 0.2192 0 1905 - 0.3289

1
3 0.4448 » - 0.3727 0.0808 0.5160 » — 0.4552

1
4 0.1353 - 0.9873 » 0.0619 » 1.0647 - 0.5059

0 00 - 2.8942 -1.0548 0.0365 1.2590 2.9142 oo

algebraic branch-points in the neighborhood of which 
two determinations of z are interchanged.

In order lo build up the Riemann surface we consider 
the map of the z-plane corresponding to the transformation 
w — ip (z). It is clear that this map will cover itself infini
tely often. Thus we have to cut up the z-plane into regions 
such that each region has a smooth non-overlapping image 
and then we must piece these different images together. It 
then becomes a question of how these regions should be 
chosen. Our previous study of the R, /-net shows that the 
critical curves through the points zn and zn give a natural 
division of the plane into suitable regions. We can choose 
either the curves Rn (tin) or the curves In (un) for this pur
pose; we select the former curves. We then imagine the 
plane cut up along those arcs of Rn (un) which join zn and 
zn with —n and —n + 1. We do not, however, cut the 
plane along the remaining arcs of Rn (tin) which join zn 
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with zn over pn and Pn, respectively. The region outside 
of all the cuts we denote by Z)o. The region inside of the 
cuts from z = —n over zn, —n + 1 and zn back to —n 
will be denoted by Dn (n = 1, 2, 3, . . .).

We begin by considering Z)o. This is a simply-con
nected region, if we leave out the points z — — n (n> 1), 
in the interior of which ip (z) is holomorphic and ip' (z) 0.
We shall prove that the image of Do by the transforma
tion iv — ip (z) is a full plane slit up along the lines 
u = un, v > vn and u = un, v < —vn (n = 1, 2, 3, . . .).
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In order to see this we shall consider the equation

ip (z) = u + i i).

It is not difficult to see that this equation has one and 
only one solution in the interior of /)0 if u iu is not on 
the slits just mentioned, and if zz + zzz is located on one 
of the slits there are two solutions on the boundary of 
Do. In fact, suppose that um < zz < iim + i-1 We can then 
locate Iim (zz) in Z)o; this curve goes from z = —m back 
to this point, intersecting the positive real axis between 
Pm and Pni + i. It lies entirely in I)o and it is the only 
branch of the curve IÏ = zz in /)0, all the other branches 
are in the excluded regions. If we trace Rin (zz) once from 
— in back to this point going in the positive sense, I(x,if) 
increases steadily from —20 to + 2c. Thus there is one 
and only one point on the curve where I (,r, if) = v and 
this point gives the desired solution, which is obviously 
unique. The case in which zz = um is easily disposed and 
will not be considered here. We designate the image of 

^0 by "o-

1 We set i/o — — 00 •

In the interior of Dt, ip (z) takes on every value once 
and only once with the exception of the values zz = zz t, 
v > zq and zz = zzL, v <—uL which are not taken on al 
all in the interior but twice on the boundary instead. 
Thus we lind that I)L is mapped upon a full plane slit 
along the lines zz = zzt, z? > zq and zz = zzL, v <-— zq. 
Let this slit plane be denoted by //t; //0 and 11 x are 
evidently connected along the common cuts. In general, 
the region I)n (n > 1) is mapped upon a full plane fln 
slit along the lines zz — zzn, zz > vn and zz = zzn, v < —zzn, 
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and this plane is connected with Z70 along the common 
cuts. There is obviously no direct connection between //Jn 
and lJtl if mn 0. The totality of these sheets /Im con
stitutes the Riemann surface of ip(z).

18. Generalizations. In concluding we shall raise the 
question of the extent to which the results obtained in the 
present paper may be considered typical for the class of 
functions defined as principal solutions of equations of 
the form

(105) .//’(:) = ÿ(-).
(0

Without pretending to answer this question we shall call 
attention to a few facts which have an obvious bearing 
on the situation.

There are many details in the preceeding discussion 
which are of a highly special nature and which cannot 
be carried over to a more general case. But the funda
mental results of the investigation have been derived 
either directly from the defining difference equation 
(2) or from the complementary theorem (3), the 
multiplication theorem (4) and the asymptotic 
formula (19). The latter three theorems are all immediate 
consequences of the difference equation and are not 
dependent upon the special analytic form of the solution. 
Now the principal solution of (105) does satisfy a com
plementary theorem, a multiplication theorem and an 
asymptotic relation all of a fairly simple nature under 
very general assumptions on </(“). Further, if y (z) is 
single-valued the nature and distribution of the singulari
ties of F (r) shows considerable resemblance to the corre- 
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sponding situation for ifj (z). There is consequently some 
ground for expecting that also the liner structure of the 
distribution of the values taken on by the several func
tions shall show striking resemblances in the special case 
here treated and the general case mentioned above.

Færdig fra Trykkeriet den 15. August 1927.
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